Honors Chemistry Second Marking Period Review Sheet

Fall, Mr. Wicks

Chapter 5: The Periodic Law

- I can explain Mendeleev's and Moseley's contributions to the shape of the modern periodic table.
- I can identify the alkali metals, alkaline earth metals, transition metals, halogens, noble gases, lanthanides, and actinides on the periodic table.
- I can distinguish between the metals, nonmetals, and metalloids (or semimetals).
- I can identify the s-block, p-block, d-block, and f-block elements on the periodic table.
- I can use the periodic table as a guide to determine electron configurations for atoms and ions of particular elements.
- I can express electron configurations using noble gas notation.
- I can determine the number of protons and electrons for ions of various elements.
- I can explain the term "isoelectronic" and how it applies to different ions having the same number of electrons.
- I can predict how properties of atoms like atomic radius, ionization energy (IE), electron affinity (EA), and electronegativity change within a group or across a period of the periodic table. See Table 1.
- I can predict how atomic radius changes when atoms form ions. In general, when neutral atoms form cations, they decrease in size; when neutral atoms form anions, they increase in size.

Table 1: Atomic Properties having Periodic Table Trends			
Property	Description		
1. Atomic Radius:	Radius is one-half the distance between identical nuclei that are bonded together.		
2. First Ionization Energy (IE):	The energy required to <i>remove</i> one electron from a neutral atom, A, of a particular element. A + energy $\rightarrow A^+ + e^-$		
3. Electron Affinity (EA):	The energy released when a neutral atom, A, for a particular element <i>gains</i> an electron. A + $e^- \rightarrow A^- + e^-$		
4. Electronegativity:	The ability of an atom in a molecule to attract electrons to itself.		

Chapter 6: Introduction to Chemical Bonding

- I can explain the difference between core electrons and valence electrons.
- I can write Lewis dot symbols for atoms of particular elements and show the gain or loss of electrons to form ionic compounds.
- I can compare and contrast ionic and molecular compounds. See Table 2.
- I can describe ionic and covalent bonding and explain the differences between them.
- I can compare and contrast the properties of ionic and molecular compounds.
- I can predict trends in bond length when comparing carbon-carbon single, double, and triple bonds.

Honors Chemistry Second Marking Period Review Sheet, Page 2

Table 2: Comparing Ionic and Molecular Compounds			
	Ionic Compounds	Molecular Compounds	
Bonding Type:	Ionic Bonding	Covalent Bonding	
In this type of bonding, electrons are:	Transferred Shared		
Type(s) of Elements Involved:	Metal + Nonmetal Elements	Nonmetal Elements	
Comparison of electronegativity differences:	Larger	Smaller	
Comparison of Properties:			
a. Melting and boiling points:	a. Higher	a. Lower	
b. Hardness:	b. Harder	b. Softer	
c. Conduction of electricity:	c. When molten or dissolved in water, ionic compounds tend to conduct electricity.	c. Molecular compounds do not conduct electricity.	

• I can apply trends for electronegativity in the periodic table to solve homework problems.

Г

• I can use electronegativity differences to classify bonds as nonpolar covalent, polar covalent, and ionic. See Table 3.

Table 3: Classifying Bonds Using Electronegativity Differences		
Electronegativity Difference	Bond Type	
0 - 0.2	Nonpolar covalent bond	
0.3 - 1.9	Polar covalent bond	
≥ 2.0	Ionic bond	

-

- I can apply to octet rule to write Lewis structures for molecular compounds and polyatomic ions.
- I remember that hydrogen violates the octet rule and can never have more than two electrons around it in a Lewis structure.
- I can count the number of bonding and nonbonding electron pairs around any atom in a Lewis structure, and recognize that nonbonding pairs are sometimes called "lone pairs" of electrons.

Honors Chemistry Second Marking Period Review Sheet, Page 3

- I can predict the shape of covalent molecules and polyatomic ions using Valence Shell Electron Pair Repulsion (VSEPR) Theory. I can name the electron-pair geometry and the molecular geometry.
 - 1. "Electron-pair geometry" refers to the structural arrangement of the *electron pairs*:

Number of Regions <u>of Electron Pairs</u>	Name of Electron-pair Geometry	Bond Angle(s)	<u>Hybridization</u>
2	linear	180°	sp
3	trigonal planar	120°	sp^2
4	tetrahedral	109.5°	sp ³
5	trigonal bipyramidal	90°, 120°	sp ³ d
6	octahedral	90°	$sp^{3}d^{2}$

2. "Molecular Geometry" refers to the structural arrangement of the *atoms*:

<u>Structural Type</u>	<u>Molecular Geometry</u>	
AB_2	linear	(It is worth noting that this table is
AB_3	trigonal planar	incomplete. In a more advanced
AB_2E	bent	chemistry course, there will be more
AB_4	tetrahedral	rows to help describe geometry
AB_3E	trigonal pyramidal	for additional structures that violate
AB_2E_2	bent	the octet rule.)
AB_5	trigonal bipyramidal	
AB_6	octahedral	

- Knowing the electron-pair geometry, I can determine the corresponding orbital hybridization and bond angle(s) present.
- I can use electronegativity values to determine bond polarity.
- I can combine knowledge of bond polarity and molecular geometry to predict molecular polarity.

Chapter 7: Chemical Formulas and Chemical Compounds

- I can use the periodic table to determine charges for ions of given elements.
- I know the names, chemical formulas, and charges for common polyatomic ions:

OH	Hydroxide Ion	CO_{3}^{2-}	Carbonate Ion
NO ₃ ⁻	Nitrate Ion	SO_4^{2-}	Sulfate Ion
$C_2H_3O_2^-$	Acetate Ion	PO_4^{3-}	Phosphate Ion
HCO ₃ ⁻	Hydrogen Carbonate Ion	$\mathrm{NH_4}^+$	Ammonium Ion
	(Bicarbonate Ion)	$\mathrm{H_{3}O}^{+}$	Hydronium Ion

- I can combine cations and anions to write formulas for ionic compounds.
- I can write cations and anions from formulas for ionic compounds.